
Microservices and DevOps

Scalable Microservices
Test Double Services

Henrik Bærbak Christensen



Motivation

• Integration testing again

– … and service tests, and CDTs

– The need for Meszaro’s test doubles

• Easiest case 

– Use programmatic test doubles or mock libraries (in-process)

• Requirement: Control of the dependency injection

– You have to tell your service to use another implementation of a service 

interface

» Program to an interface, use object composition, dep. injection

CS@AU Henrik Bærbak Christensen 2



In Architectures

• Meszaros (2007) has a special category of doubles

– Saboteurs stubs that behave badly!

• The ones we need for testing Nygard Stability Patterns.

• Decorator pattern can be used, to add saboteur behavior

CS@AU Henrik Bærbak Christensen 3



Motivation

• But it is not always possible

– Not programmed to an interface, no dependency injection

– Low cohesion design

• Service is accessed in 7.463 places all over the code…

– Non “programmatic” interfaces (REST, UDP, …)

• In a microservice/SOA context, services are remotely 

deployed services, and we need to test that as well

– CDT and connector testing within a staging environment that is a 

real distributed system, but with saboteur doubles…

• Can test latency issues, availability, etc.

CS@AU Henrik Bærbak Christensen 4

B
ad

 A
rch

itectu
re, IM

O



Solution

• Make test doubles that are deployed services

– Support ‘out-of-process service tests’

• That is

– Conceptually identical

– Difference: The interface 

• In-process service test doubles:

– Java class implementing interface

– Or Mock library generated class, with expectations set

• Out-of-process service test doubles:

– Deployed remote service on given port, programmed to respond to 

network calls, using ‘canned’ responses

CS@AU Henrik Bærbak Christensen 5



How?

• Well, of course you may just code it!

• Make a (SparkJava) REST service that produce 

– canned responses

– is slow responding

– fail, drop network connection, send illegal JSON, send 1TB 

random byte array, return 1.000.000 item JSON array, …

• Alternative: A programmable REST service…

CS@AU Henrik Bærbak Christensen 6



Mountebank

A Nice Technology Choice



Demo

• Goal:

– Issue: The QuoteService returns random quotes

• Test before we have developed this tricky service ☺

– Goal: Make a deterministic test stub

CS@AU Henrik Bærbak Christensen 8



Installing? Nay

• Mountebank is a NodeJS service 

• Docker, help me…

– 2525 is Mountebank’s port

– Must port map the imposter port as well

CS@AU Henrik Bærbak Christensen 9

Using one of several mountebank images…



Define Behavior

• Next we have to 

program the imposter…

– Basically by POSTing a 

JSON configuration files 

to Mountebank

CS@AU Henrik Bærbak Christensen 10

GET /msdo/v1/quotes/7

Response

Slow response!



Step 2

• Here I use ‘httpie’ to PUT the JSON to mountebank

CS@AU Henrik Bærbak Christensen 11



Ok - Testing

CS@AU Henrik Bærbak Christensen 12

Now: A slow responding deterministic test stub service.

Long wait here!



Testing

CS@AU Henrik Bærbak Christensen 13



Advanced Features

• Lots

– Mock verifications

– Variable behavior

• Add more responses, taken in order

– And on and on

• Take care:

– Doubles should be simple, or the bug will be in the double ☺

• I spend quite some time debugging my JSON to find that ‘,’ I had 

misplaced 

CS@AU Henrik Bærbak Christensen 14



TestContainers Context

• I had a hell of a troubled time to get mountebank running 

in a TestContainers context 

– Issue: 

• TC will await the port 6777 port opening for the doubled service

• Which will not open until it programmed

– Deadlock: waiting for an event that cannot happen 

– Solution:

• Do not use PUT/POST for programming, instead volume mount a 

‘config.json’ file with the double behavior specification, and tell 

mountebank to read that.

CS@AU Henrik Bærbak Christensen 15



Conclusion

• We can replace programmatic test doubles with service 

test doubles when

– The UUT has no well encapsulated API to the service and/or no 

dependency injection in place

– We want to make integration testing in a real distributed staging 

environment

• Mountebank is a really nice and flexible tool

• Use it in the mandatory on safe failure modes…

CS@AU Henrik Bærbak Christensen 16


